慢性危重症和重症监护后综合征:从病理生理学到临床挑战
摘要
背景:重症监护后综合征(PICS)包括在重症监护室(ICU)出院后持续存在的身体、认知和心理障碍。最终,影响长期预后,包括功能结果和生存。因此,幸存者往往会发展成永久性残疾,消耗大量医疗资源,患者遭受长期痛苦。本综述旨在介绍PICS新的研究进展,破译其潜在机制,并突出介绍未来的研究方向。
正文:综述慢性危重症(CCI)和PICS研究新数据。
1、关注ICU获得性肌无力:这是一种以恢复期肌肉收缩力受损、持续肌肉萎缩为特征的综合征,包括肌肉合成代谢障碍、再生能力受损、线粒体功能障碍和钙稳态异常。
2、讨论ICU后认知障碍和神经心理障碍的临床相关性,其与ICU住院期间谵妄的关联,以及推定低度持续炎症的作用。
3、描述了先天和适应性反应的深刻而持久的定性和定量变化。
4、讨论了从急性肾损伤发展为慢性肾损伤的生物学机制,为肾脏保护策略开辟了新领域。
5、报告了ARDS和长期机械通气的长期肺部结局。
6、讨论了儿童的一些特殊性,包括儿童的ICU前状况、发育和成熟的影响。
结论:最近对PICS独特特征的生物学基础的理解,突出了重新考虑PICS患者长期转归的必要性。有必要更好地了解这种综合征和诱发因素,以制定缓解CCI和PICS,并最终改善患者康复的方案和策略。
关键词:ICU后综合征;慢性危重症;长期结局;ICU后遗症;神经肌肉障碍;认知障碍;获得性免疫抑制
引言
危重症患者的幸存者通常会出现慢性多器官长期后遗症,称为慢性危重症(CCI)和重症监护后综合征(PICS)。CCI通常被定义为一种亚急性疾病状态,需要长时间的高强度护理,其特点是住院时间长、痛苦大、死亡率高和消耗大量医疗资源。相比之下,PICS代表出院后有些ICU引起的剩余健康问题。这些术语包含几个不同的病理和生理过程,这些过程在初始器官损伤和潜在条件之间有所不同,但最终会影响功能结果和长期生存。
炎症、分解代谢和神经内分泌疾病,也称为“持续性炎症、免疫抑制和分解代谢综合征”,会导致慢性器官衰竭和虚弱,延迟不良临床结果,并控制临床发展变化轨迹。因此,尽管ICU死亡率大幅下降,但出院到康复或长期治疗机构的患者比例却大幅增加[1]。今天,经合组织国家约50%的ICU患者年龄超过65岁,伴随着越来越多的合并症和虚弱,ICU住院可能会导致严重的老年人脏器功能衰退并影响预后。
今天,越来越多的证据表明,急性器官衰竭,即使是可逆的,也会导致后续的慢性功能障碍,或通过器官相互作用加速其他系统的退化。本综述描述了导致神经认知、肌肉、呼吸、肾脏和心血管长期功能障碍或虚弱的常见或器官特异性病理生理机制(图1)。还讨论了儿童ICU幸存者的具体案例。每个部分都描述了所涉及的已建立或假定的细胞机制及其对临床医生的潜在影响。
图1:ICU幸存者患有重症监护综合征
分解代谢综合征和神经肌肉疾病
重症多发性神经病(CIP)和重症肌病(CIM),临床上由医学研究委员会(MRC)总分<48定义,明确导致ICU获得性肌无力(ICU–AW)。ICU–AW患者的短期后果很差(例如,机械通气时间、住院时间和住院死亡率增加)[2]。ICU–AW也会影响长期结果。ICU出院时的低MRC评分,即使低于55,也与中长期死亡率增加有关[3-5]。与孤立性肢体肌无力不同,孤立性膈肌功能障碍与2年死亡率增加无关,但当两者同时存在时,预后更为恶化[5]。ICU后的随访研究还显示,包括COVID-19患者[6,7]在内的ICU幸存者经常表现出持续的肌无力和长期的身体虚弱后果。在ICU出院后的一年中,幸存者的肌肉力量和耐力显著下降[8],据患者报告,这会影响身体和与健康相关的生活质量[9]。这些后果持续5年,在6分钟步行测试中持续受到限制[10-12],有氧能力受损(最大VO2减少)经常与肌肉限制有关[13],并且仍然对身体表现和健康相关的QOL产生影响[10-12]。这主要在感染性休克[9]和ARDS[10-12]之后进行了研究。这种对身体的影响最终会影响患者生活自理。在一项研究中,住院前在家独立生活的患者中,近一半在ICU住院6个月后失去了这种能力[14]。然而,ICU幸存者的后续轨迹是可变的[15]。虽然有些会改善他们的功能状态,但其他人将永远无法恢复。例如,三分之二的感染性休克患者在1年内没有恢复到发病之前的身体状况[10]。目前预测这种演变的诊断工具是有限的。
尽管CIP在近一半的ICU存活患者中持续存在[16,17],但动物和人体研究均表明神经成分很少参与持续的ICU–AW。相反,肌肉成分的改变将是主要机制[10,18]。CIM后持续肌无力的特点是由于收缩力受损和肌肉萎缩而导致力量丧失。急性损伤后,由于能量受损和促炎介质增加,蛋白水解途径被强烈激活,并直接促使肌肉萎缩[19,20]。虽然蛋白水解似乎对肌肉质量有害,但它对肌肉稳态至关重要[21]。此外,为了提供底物以维持能量水平,泛素-蛋白酶体系统(UPS)允许清除非功能性切割蛋白质。在大鼠中,蛋白酶体超负荷与慢性危重症期间的坏死性肌肉表型有关,这表明UPS无法充分降解的蛋白质积累[22]。此外,在大面积烧伤的实验模型中,硼替佐米对蛋白酶体的早期或晚期药理学抑制降低了高代谢肌肉反应,但增加了死亡率[23]。
在恢复阶段,虽然分解代谢途径减弱并且蛋白质合成增加,但一定程度的肌肉萎缩持续存在,这表明合成代谢障碍[24-27]。动物和人体研究还表明,在小鼠脓毒血症模型[28]的恢复阶段和慢性危重症患者的骨骼肌中,肌肉自噬减少[29],分别影响肌肉收缩性。自噬是受损细胞成分(例如:线粒体、受损细胞器、有毒蛋白质聚集体、未折叠或氧化蛋白质)的大规模降解系统,在因炎症和氧化应激导致的危重疾病期间积累,其抑制导致各种肌病和肌肉萎缩[30,31]。最后,为了应对分解代谢的肌肉损伤,肌肉还具有通过其卫星细胞进行再生的强大能力[32]。该功能在ICU幸存者中也受到损害,在ICU停留6个月后卫星细胞含量均减少[24]和参与结构和功能性肌肉发育和细胞外基质重塑的基因异常上调[33],表明肌肉修复过程存在缺陷[27。此外,实验证明卫星细胞中存在线粒体功能障碍,肌肉内注射间充质细胞可改善脓毒症小鼠的骨骼肌功能和预后[34-36]。线粒体在肌肉生理学和ICU–AW发病机制中起关键作用[37]。随着时间的推移,其功能障碍可能导致肌肉无力持续存在。鼠脓毒症一个月后,幸存者骨骼肌中的线粒体群仍然发生了深刻的变化,呼吸减少和严重的形态异常。线粒体功能障碍也与氧化蛋白质谱有关[38]。钙稳态异常也可能由于通道病和钙超载而改变线粒体功能而发生[39]。
此外,动物和人体研究都表明,尽管肌肉质量恢复[24,28,3,8],但在一项随机对照试验中,ICU患者股四头肌的神经肌肉刺激恢复了肌肉质量,但未能改善肌肉力量[40]。总体而言,这些数据表明,肌肉纤维的生物力学质量似乎至少与其数量一样重要。
这些导致持续ICU–AW的有害机制的持续存在与持续性炎症有关。尽管炎症打击解决了,但ICU幸存者可能会持续存在低度炎症状态。在入住ICU后7天和6个月发现肌肉组织中表达的炎症基因上调,并且与肌肉力量下降相关[29]。持续性炎症可能是ICU幸存者观察到的肢体肌肉加速老化的一个可能解释,这一概念被描述为炎症老化[41]。
尽管人们对该主题越来越感兴趣,但仍需要付出巨大的努力来填补知识空白并更好地了解ICU幸存者加速肌肉老化的机制,总结在图2中。寻找相关的临床前模型来研究长期ICU后果对于寻找创新的治疗靶点至关重要[42]。目前,尚无预防或改善危重病后肌无力的药物治疗[43]。营养策略是最重要的,但由于持续的炎症和合成代谢抵抗,其效果可能会减弱[44]。除了与年龄相关的骨骼肌质量和功能丧失之外[45],加速ICU–AW和肌肉减少症是一个关键问题,尤其是在老年人中。在ICU出院时,转诊至适当的物理康复路线可能很有价值,但几乎没有证据支持这一策略[46]。
图2:重症监护病房获得性虚弱的推定机制
长期认知障碍和神经精神障碍
基于人群的数据集和前瞻性队列报告称,ICU幸存者出现实质性和持续性认知衰退和功能障碍的几率很高。一项前瞻性研究表明,因严重脓毒症住院的ICU患者在一年内发生中度/重度认知障碍的可能性(多变量分析)比普通住院的非脓毒症患者高3.33[47]。同样,另一项回顾性研究表明,在调整年龄、性别和合并症后,因脓毒症住院的ICU患者比年龄和性别匹配的对照组高2倍患痴呆症的可能性[48]。使用相同的方法但反向设计,另一项研究表明,与对照组相比,痴呆症患者以前患脓毒血症的几率更高。除了脓毒症和感染性休克,一项前瞻性研究表明,40%的ICU患者在出院后3个月的全面认知评分低于人群平均值1.5SD,26%的患者评分低于人群平均值2SD(相当于轻度阿尔茨海默病),无论是什么原因进入ICU[49]。缺陷持续到12个月,并导致QOL(生活质量)和与先前在ARDS患者或心脏手术中报告的精神病理学症状相关的日常生活工具活动的显著损害[50-52]。值得注意的是,在这项研究中,医院谵妄持续时间较长与3个月和12个月时整体认知和执行功能评分较差有关。从那时起,这一发现在多项研究中得到证实,在谵妄严重程度/持续时间与长期认知衰退加速和/或严重的心理问题(如PTSD)之间建立了牢固的关联[53,54]。在专注于ICU后认知能力加速下降的预测因素的研究中,谵妄(或对精神安定药的需要)、脓毒血症、低血糖和血清NSE含量高与较差的认知结果相关[55,56]。总体而言,尽管ICU后认知障碍和长期神经心理障碍的纳入标准、定义和测量方法/测试存在一些异质性,但越来越多的证据表明脓毒症后/ICU后认知障碍的临床相关性和显著ICU住院期间谵妄/脓毒症相关脑病的相关性[57]。然而,这些改变的生物学基础仍然难以捉摸。
在多微生物脓毒症(CLP)大鼠模型中,与假手术相比,脓毒症直接导致学习和记忆障碍,即使在完全康复后(10天)[58]。在非脓毒症急性炎症动物模型(LPS诱导的非致命性内毒素血症)中,幸存者在完全康复后3个月表现出径向迷宫中的记忆缺陷和开阔视野探索模式的变化[59]。有趣的是,这些变化与神经解剖学变化有关,例如海马和前额叶皮层神经元的丧失以及顶叶皮层胆碱能神经支配的减少。有趣的是,在啮齿动物实验研究中,24小时脓毒症的严重程度(通过脓毒症行为评分和血浆IL-6估计)与杏仁核、前额叶皮层和海马中血脑屏障的通透性增加相关,并与持续性相关大脑中的氧化应激。最终,脓毒血症评分与CLP后10天大鼠的认知能力呈负相关[60]。多种炎症介质可能与急性和持久的神经炎症有关。其中,IL-1β似乎起着举足轻重的作用。在一项研究中[61],虽然WT小鼠在LPS攻击后表现出长期记忆巩固受损,但接受IL-1受体拮抗剂的小鼠受到保护。它还表明IL-1β引起海马神经元功能障碍并可能导致神经元死亡。
在人类中,转化研究很少,大部分文献来自于关注大手术后认知能力下降的研究,这与老年人高度相关。在这种情况下,一些神经元损伤的生物标志物与术后谵妄(POD)和随后的术后认知下降(POCD)相关[62]。血液或脑脊液中的全身炎症的非特异性标志物,例如CRP、IL-6、IL-1B或TNF-α,通常与谵妄相关,但对POCD的预测效果不佳[63-66]。相反,神经元损伤的生物标志物,如S100ß、NSE[67],或磷酸化的神经丝重亚基,与POD和POCD的相关性更一致[68]。2012年,一项研究在一项试验性研究中探索了ICU幸存者,该试验结合了47名患者的弥散加权成像MRI、急性谵妄监测和认知结果,这些患者在3个月和12个月的随访后进行了评估。他们观察到谵妄持续时间与出院时显著的白质破坏[定义为低分数各向异性(FA)]相关,特别是在胼胝体和内囊前肢。还报告说,出院时内囊前肢和三个月时胼胝体膝部的低FA与3个月和12个月时的认知结果差有关,这表明现代神经影像技术可以帮助筛查患者ICU后认知能力下降的风险[69]。
迄今为止,主流假设是脓毒血症/炎症性危重疾病相关的全身性炎症可诱导一些急性CNS损伤和可能长期持续激活CNS细胞,如血脑屏障内皮细胞[70]或神经胶质细胞,因此会促进导致神经元死亡和神经系统疾病的低度持久炎症。然而,实验数据不足以支持这种说法,系统性炎症或SNC炎症诱发的急性脑功能障碍和长期神经认知障碍是否通过重叠或离散机制发生仍有待研究。然而,由于与预先存在的轻度认知障碍和急性期中谵妄的严重度密切相关,应促进在ICU中检测脑功能和预防谵妄的措施,并属于“ICU的标准治疗包”,限制长期认知障碍的假定机会。
免疫抑制和持续性炎症
在急性危重病——尤其是脓毒血症——之后,越来越多的证据表明幸存者的免疫反应发生了深刻而持续的变化。迄今为止研究的免疫反应的所有细胞成分似乎都发生了改变。在危重疾病的急性期,趋化因子、细胞因子和肾上腺素能风暴会在急性危重疾病期间触发脾脏和骨髓中先天性骨髓细胞的快速动员。这种功能性但主要是未成熟的单核细胞和中性粒细胞的释放,称为髓源性抑制细胞(MDSC),旨在同时对抗入侵的病原体并启动炎症的消退。因此,循环中性粒细胞表现出降低的效应能力(呼吸爆发和趋化性),最近的报告显示这些未成熟粒细胞(G-MDSC)正在循环[71,72]。类似地,单核细胞对进一步损伤的反应能力降低(通过测量微生物刺激后细胞因子的产生量进行实验探索)。单核细胞MDSC产生大量的IL-10,导致先天细胞和免疫细胞失活,并具有以低HLA-DR表面表达为特征的抗原呈递能力受损[73,74]。单核细胞膜上HLA-DR的低表面表达是这种免疫抑制状态的一种常用替代标志物,与医院感染和死亡率密切相关。总体而言,MDSC是未成熟和免疫抑制性骨髓细胞的异质群体,从早期到脓毒症发作后6周发现于危重患者[75],并且始终与医院感染和不良结果相关[76]。大量MDSC释放也会在骨髓生态位中产生空白,刺激早期骨髓祖细胞的扩张,而牺牲了淋巴细胞和造血功能[77],这部分解释了在ICU幸存者中观察到的持续性淋巴细胞减少和慢性贫血。
淋巴细胞也与危重病后的免疫功能障碍有关。首先,淋巴细胞减少是脓毒症的典型生物学特征,脓毒症发病后第3天和第4天持续淋巴细胞减少与医院感染和随后的死亡有关[78]。关于B细胞的数据相对稀缺,但B细胞耗竭已在危重疾病的早期和后期出现,可能是通过增加细胞凋亡和减少B细胞成熟[79-81]。除了B细胞耗竭外,表型(B细胞亚群)和功能似乎也发生了变化,数据表明转向监管模式和/或疲惫状态,与死亡率相关[80,82]。关于T细胞,许多研究首次报道了危重疾病(尤其是脓毒血症)期间的血液耗竭和伴随的细胞凋亡[83]。传统的T细胞经典地分为CD4+或CD8+,CD4+亚群发挥“辅助”功能,特别是通过产生形成免疫反应的细胞因子,而CD8+以细胞毒活性为特征。不同的CD4+T细胞亚群并非都同样受到细胞凋亡的影响,存活的细胞会经历多种改变其功能的表型变化[84]。因此,已经记录了调节性T细胞比例增加和主要“辅助”亚群(即Th1、Th2和Th17,能够产生IFN)比例减少。除了数值变化外,还发现了功能变化,并且主要的Th亚群似乎在急性危重疾病后采用“无反应性”低反应状态,其特征是产生细胞因子的能力下降和共抑制受体的表达。TCD8+反应也被证明在实验性脓毒症后发生改变,对抗原遇到的反应降低,增殖能力降低,清除病原体的能力下降[85]。最终,这些改变终止于适应性反应的缺陷,其特征是淋巴器官中大量的T和B淋巴细胞凋亡,其TCR或BCR库的急剧减少,以及导致对进一步损伤反应不足的效应器功能下降,例如作为医院感染。此外,由于长期组织损伤导致的持续低度炎症可能使这种现象持续存在,并自相矛盾地导致免疫抑制(图3)。在老年患者中,除了免疫衰老和炎症老化过程之外,感染后的免疫特征显著增加了传染病和癌症的发病率和严重程度。
图3:ICU获得性免疫缺陷的假设机制
总的来说,应该记住,免疫反应是高度动态的,很少是二分法的(例如“促”/“抗”炎症),同时可以被划分。此外,由于许多关于危重疾病期间和之后的人体免疫功能研究都是在血液中进行的,因此不应将结论外推至免疫细胞发挥其功能的远处外周器官[86]。因此,即使我们可以肯定危重疾病后免疫反应的持续改变,更全面、动态和理想区域化的免疫监测似乎是未来有针对性的治疗干预的先决条件。
长期急性肾损伤问题:进展为慢性肾病的风险和后果
急性肾损伤(AKI)长期以来一直被认为是一种完全可逆的综合征。然而,最近的证据表明,AKI是进展为慢性肾病(CKD)(危险比HR8.8)和终末期肾病(HR3.1)[87]的主要危险因素,尤其是在ICU患者中[88];风险随着AKI的严重程度而增加。AKI还与心血管风险相关:充血性心力衰竭(HR高达2.2)[87]和急性冠状动脉事件(需要肾脏替代治疗的AKI后HR1.7)[89];AKI后因重大心脏不良事件而死亡或入院的风险高于心肌梗死后[90]。从这些流行病学发现中出现了“适应不良修复”的概念[91]以及AKI和CKD之间的相互之间关联[92]。从AKI进展到CKD的主要实验模型是啮齿动物的缺血/再灌注(I/R)。实验结果显示了肾损伤的两种主要机制,这意味着不同的细胞死亡机制:肾小管和血管损伤,两者都会导致间质纤维化。近端小管中的I/R诱导坏死性凋亡、促炎细胞因子(IL-18、IL-1ß和TGF-ß)的延长表达、巨噬细胞浸润和炎性体激活,并带有放大环,即使在肾功能正常化后也是如此[93,94]。这些病变是导致纤维化和CKD的原因。
线粒体是适应不良修复的关键效应器。在近端小管中,由I/R诱导的ATP动态相关蛋白[1]消耗负责通过动态相关蛋白[1]进行线粒体裂变,从而诱导活性氧种类的释放。因此,肾小管细胞增殖受到抑制,而IL-6分泌、中性粒细胞募集和细胞凋亡增加[95]。AKI后1个月输注有丝分裂保护剂可减少炎症,恢复肾脏结构完整性(毛细血管和足细胞),并减少间质纤维化[94]。尽管对初始AKI有保护作用,但肾小管细胞中的自噬是导致小鼠I/R后30天更多的炎症和更差的肾脏结果的原因[96],通过G2-M期的细胞周期停滞。它导致促纤维化细胞因子(TGFß,结缔组织生长因子)的上调、COL4A1和COL1A1基因的激活以及细胞去分化[97,98]。纤维化的强度不依赖于细胞凋亡的水平(细胞周期停滞对纤维化过程的细胞凋亡的主要作用)。还涉及表观遗传现象:组蛋白去乙酰化酶抑制通过减少纤维化来改善长期肾功能[99]。在I/R后的几周内,管周毛细血管密度会降低,尽管最初修复了管损伤[100]。因此,对血管紧张素2和高血压的敏感性增加。TGF-ß在缺血性肾脏中的延迟表达与毛细血管稀疏有关[100,101],例如endothelin-1,其转录在I/R后持续增加,导致肾脏质量减少[102]。
毛细血管稀疏导致慢性缺氧,在I/R后持续长达5周,HIF1(缺氧诱导生长因子)升高[103]。巴塞尔等人证明了内皮-间质转化的证据,这比上皮-间质转化更为普遍[104]。细胞凋亡也在毛细血管稀疏中起作用。事实上,caspase-3(细胞凋亡的主要效应物)在I/R后数周仍保持激活状态,并且caspase-3小鼠表现出较少的微血管稀疏和肾纤维化[103]。在人类细胞培养中,缺氧会增强内皮细胞而非上皮细胞的细胞凋亡,而坏死是肾小管的问题[103]。最后,DRP1诱导的线粒体裂变也隐含在毛细血管稀疏中[95]。
除了肾脏病变,AKI是一个多系统问题,会产生影响,例如在淋巴结(纤维化)[105],以及肺和脑(促炎细胞因子的转录增加)[106,107]。在这些远隔脏器的影响中,心血管影响是一个主要问题。小鼠I/R诱导TNF-α和IL1、内皮功能障碍和心肌细胞凋亡增加[108](图4)。
图4:AKI后向慢性肾病进展的潜在机制
总之,在过去的二十年里,从AKI进展到CKD的病理生理学已经得到很好的描述,为肾脏保护性介入研究开辟了领域:线粒体保护[94]、抑制有害效应物,如组蛋白去乙酰化酶[109]、TGF-β,或内皮素[101],或给予肾脏保护效应物,例如VEGF或精氨酸[100,104]。
ARDS后长期肺功能障碍
ARDS的发病机制涉及对直接或间接的肺损伤。治疗是一个复杂的过程,从损伤开始,旨在恢复肺部的结构和功能特性。炎症期通过肺泡巨噬细胞吞噬凋亡的中性粒细胞而消退,而在增殖期恢复肺泡-毛细血管屏障的完整性。上皮修复涉及与成纤维细胞流入相关的II型肺泡细胞的迁移、增殖和分化,旨在重塑裸露的基底膜。不适当的、广泛的、长期的炎症和过度的细胞外基质沉积和重塑可能导致残留的肺损伤,导致患者长期身体残疾。经过足够的延迟后,放射学、功能和物理测试可以评估后遗症。ARDS幸存者第一年后进行的放射学检查可能显示实质浸润完全消退。然而,在超过一半的幸存者中观察到持续性异常,主要是网状结构和磨玻璃影[110-113]。总体范围通常较低,占肺实质的8%至15%,优先位于非依赖性区域。有趣的是,原发性肺部原因(如肺炎)导致的ARDS患者比肺外ARDS患者表现出更严重的纤维化后遗症[110]。
除了残留的解剖异常外,许多ARDS幸存者还有持续的肺功能障碍。在ARDS后的第一年,肺部对二氧化碳的扩散能力(DLCO)有所改善,但未达到正常范围的下限[114]。因此,一项研究报告6个月时DLCO为预测值的65%,而另一项研究则描述了从3个月时的63%提高到12个月时的72%,然后在接下来的4年中保持稳定[115-117]。关于肺活量测定,已经在ARDS后的第一年内描述了非常轻微的阻塞性和限制性[114-116,118]。一秒用力呼气量(FEV1)和FEV1/用力肺活量(FVC)分别为12个月预测值的85%至87%和96%至101%,而总肺活量(TLC)范围为12个月预测值的88%至95%[114-116,119]。有趣的是,保护性通气策略(使用低潮气量)并未对ARDS幸存者的长期肺功能带来益处[114,118]。此外,在原发性肺源性ARDS和肺外ARDS之间以及是否有俯卧位的患者之间没有观察到肺容量差异[110,119]。使用6分钟步行测试(6-WT)评估身体功能表明ARDS幸存者存在显著且持续的运动限制。在3个月时,一项研究描述了6MWT距离为预测值的49%,而在ARDS后12个月的值范围为66%至72%[116,119]。值得注意的是,这种无法运动似乎与ARDS幸存者报告的轻度结构和功能异常不成比例。这种差异可以用肺外长期改变来解释,例如心功能不全、肌肉功能失调和神经肌病。因此,在ARDS幸存者的CT扫描病变范围或肺活量异常的重要性与6MWT距离之间没有发现相关性。总之,这些发现说明了ARDS的长期肺部后果,在放射学异常和肺活量变化方面相对温和,但在降低扩散能力和运动限制方面更为关键。
儿童重症监护后综合征
与成人一样,儿童PICU幸存者的身体、认知、社会和心理功能可能会恶化[120]。最近,儿童PICS的概念化导致了PICS-儿科框架的发展。与儿童健康相关的特定因素至关重要。危重疾病发生在快速的成长和成熟时期,越来越多的重症监护病房儿童在基线时患有慢性疾病和发育障碍。始终如一地,出院后,孩子的身体、认知、情感和社会健康受到孩子在PICU之前的状况、发育和成熟的强烈影响。家庭、父母和兄弟姐妹的情绪和社会健康也可能受到影响。因此,恢复的轨迹和持续时间是高度可变的[121]。
(一)身体机能障碍
PICU获得的新功能障碍(呼吸障碍、疼痛、行动不便以及自我保健和喂养受损)发生在10%的住院患者[122,123]。最近开发了一个功能状态量表(FSS),涉及六个领域(精神状态、感觉、交流、运动功能、进食和呼吸)[124]。已确定的不良功能结局风险包括基线残疾、因创伤入院、神经或肿瘤疾病、心脏骤停、年龄<1岁和疾病严重程度[120,125]。基线功能正常的儿童的功能衰退更为显著,尽管恢复速度比基线功能受损的儿童快[126]。FSS不评估可能被低估的睡眠障碍、疲劳和严重肌无力[127]。
(二)儿科ICU获得性肌无力(PICU–AW)
与成人不同,PICU–AW的数据有限,但据报道,PICU幸存者发生率在1.7-4.7%,远低于成人[128,129]。这种差异仍不清楚,但可以考虑儿童和成人之间的差异:儿童的轴突较短,因此不易受伤,儿童的线粒体功能更好,恢复性神经营养因子浓度/功能更高/更好。一致地,他们从免疫介导的周围神经病变中恢复得更好[130]。此外,儿童先前存在的神经或肌肉损伤性疾病较少,如糖尿病、癌症、慢性器官衰竭或慢性吸毒。然而,针对多器官衰竭、严重脓毒症、高频振荡通气、ARDS或多发伤患者的高危人群的研究可能会更好地估计PICU–AW在易感危重病儿童中的真实风险。
(三)儿童长期机械通气的肺部后果
实验性儿科数据显示与年龄相关的VILI易感性[131]。婴儿肺中弹性蛋白的浓度在生命的前20天内增加了10倍,然后增加的速度较慢。从婴儿期到儿童期,胶原蛋白浓度呈线性增加[132]。肺弹性特性的差异可能解释了肺应变的差异。已在动物模型中描述了NF-κB的年龄依赖性差异,表明暴露于高氧后新生小鼠的炎症较少[133]。伤害性机械通气不会像成人一样激活婴儿或幼儿的先天免疫,因为先天免疫系统的全部能力要到青春期才能达到[134]。幼儿和成人之间的适应性免疫也不同,儿童倾向于产生更强的抗炎反应[135]。总之,与成人相比,儿童患者对VILI的敏感性可能较低[136]。
(四)小儿神经危重疾病和认知功能障碍
为了评估新的认知障碍,6点儿科大脑表现类别(PBPC)通常用于估计基线整体认知功能以及PICU住院期间和之后的变化[137]。据报道,3.4%的PICU幸存者出现认知能力下降。风险因素包括外伤、中毒、神经系统疾病或癌症的入院诊断、有创机械通气和体外生命支持[138]。在调整疾病严重程度和PICU前功能后,急性神经系统疾病是6个月时不良认知结果的最重要预测因素[139]。损伤、炎症、再生和可塑性的血液生物标志物可能有助于评估急性脑损伤后功能障碍的风险[140]。在患有创伤性脑损伤或心脏骤停的儿童中,已经评估了诊断和预后生物标志物,例如NSE和S100b[141,142]。最近,作为再生生物标志物的脑源性神经营养因子和血管内皮生长因子的血液水平低,已确定儿科神经重症监护幸存者中存在新的认知障碍风险的儿童[143]。最终,认知障碍会随之发展,PICU出院时的PCPC评分可能会恶化或改善[120]。
(五)心理功能障碍
17%到62%的PICU幸存者经历过创伤后应激障碍(PTSD)[121,144]。PICU出院后的儿童也有抑郁、自尊心改变、妄想性记忆或恐惧以及睡眠障碍的报告。一些证据表明,出院后患有精神疾病的儿童更有可能在接下来的6-12个月内因身体问题再次入院[145]。有几个因素会增加心理问题的风险。在调整疾病严重程度和紧急入院状态时,妄想记忆与镇静时间和随后的PTSD症状独立相关。相反,入住ICU的事实记忆与PTSD症状无关,但急诊入院状态、疾病严重程度、侵入性操作暴露和脓毒血症[146]。
(六)社会表现和PICS家族
对PICU幸存者的定性研究揭示了与生活中断、社会耻辱以及重建社会认同的需要相关的主题,特别是在年龄较大的儿童中[147]。PICU幸存者的父母可能会在出院后不久和康复过程中出现创伤后压力、焦虑和抑郁症状[148]。长期问题的风险因素包括意外入住PICU和在PICU中进行的医疗操作的数量,以及创伤事件史、入院前的心理问题、有限的社会支持和在PICU逗留的负面记忆[109,120]。
结论
尽管全球ICU生存率显著提高,但患者通常会出现多方面的ICU后综合征,包括多器官功能衰弱并导致QOL严重受损。鉴于西方国家ICU的人口正在迅速老龄化,这些问题尤其有意义。作为一项研究议程,通过转化研究更好地了解将急性危重疾病和长期损害联系起来的潜在生物学机制是当务之急,例如探索预防或治疗PICS的干预措施的临床试验。然而,由于PICS的多个方面以及长期后续合作研究的需要,这一研究领域具有挑战性。
因此,我们认为全科医生、内科医生或老年科医生必须与重症医学科医生一起对ICU幸存者的长期随访及其具体问题保持警惕,以便患者能够从观察到的ICU死亡率降低中持久而彻底地受益。
参考文献
1.Kaukonen KM,Bailey M,Suzuki S,Pilcher D,Bellomo R.Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand,2000-2012.JAMA.2014,311(13):1308-16.
2.Jolley SE,Bunnell AE,Hough CL.ICU-acquired weakness.Chest.2016,150(5):1129-40.
3.Hermans G,Van Mechelen H,Clerckx B,Vanhullebusch T,Mesotten D,Wilmer A,et al.Acute outcomes and 1-year mortality of intensive care unit-acquired weakness.A cohort study and propensity-matched analysis.Am J Respir Crit Care Med.2014,190(4):410-20.
4.Van Aerde N,Meersseman P,Debaveye Y,Wilmer A,Gunst J,Casaer MP,et al.Five-year impact of ICU-acquired neuromuscular complications:a prospective,observational study.Intensive Care Med.2020,46(6):1184-93.
5.Saccheri C,Morawiec E,Delemazure J,Mayaux J,Dube BP,Similowski T,et al.ICU-acquired weakness,diaphragm dysfunction and long-term outcomes of critically ill patients.Ann Intensive Care.2020,10(1):1.
6.Carenzo L,Protti A,Dalla Corte F,Aceto R,Iapichino G,Milani A,et al.Short-term health-related quality of life,physical function and psychological consequences of severe COVID-19.Ann Intensive Care.2021,11(1):91.
7.Heesakkers H,van der Hoeven JG,Corsten S,Janssen I,Ewalds E,Simons KS,et al.Clinical outcomes among patients with 1-year survival following intensive care unit treatment for COVID-19.JAMA.2022,327(6):559-65.
8.Poulsen JB,Rose MH,Jensen BR,Moller K,Perner A.Biomechanical and nonfunctional assessment of physical capacity in male ICU survivors.Crit Care Med.2013,41(1):93-101.
9.Solverson KJ,Grant C,Doig CJ.Assessment and predictors of physical functioning post-hospital discharge in survivors of critical illness.Ann Intensive Care.2016,6(1):92.
10.Poulsen JB,Moller K,Kehlet H,Perner A.Long-term physical outcome in patients with septic shock.Acta Anaesthesiol Scand.2009,53(6):724-30.
11.Herridge MS,Batt J,Santos CD.ICU-acquired weakness,morbidity,and death.Am J Respir Crit Care Med.2014,190(4):360-2.
12.Van Aerde N,Meersseman P,Debaveye Y,Wilmer A,Casaer MP,Gunst J,et al.Aerobic exercise capacity in long-term survivors of critical illness:secondary analysis of the post-EPaNIC follow-up study.Intensive Care Med.2021,47(12):1462-71.
13.Urbina T,Canoui-Poitrine F,Hua C,Layese R,Alves A,Ouedraogo R,et al.Long-term quality of life in necrotizing soft-tissue infection survivors:a monocentric prospective cohort study.Ann Intensive Care.2021,11(1):102.
14.Yende S,Austin S,Rhodes A,Finfer S,Opal S,Thompson T,et al.Longterm quality of life among survivors of severe sepsis:analyses of two international trials.Crit Care Med.2016,44(8):1461-7.
15.Dinglas VD,Aronson Friedman L,Colantuoni E,Mendez-Tellez PA,Shanholtz CB,Ciesla ND,et al.Muscle weakness and 5-year survival in acute respiratory distress syndrome survivors.Crit Care Med.2017,45(3):446-53.
16.Semmler A,Okulla T,Kaiser M,Seifert B,Heneka MT.Long-term neuromuscular sequelae of critical illness.J Neurol.2013,260(1):151-7.
17.Guarneri B,Bertolini G,Latronico N.Long-term outcome in patients with critical illness myopathy or neuropathy:the Italian multicentre CRIMYNE study.J Neurol Neurosurg Psychiatry.2008,79(7):838-41.
18.Goossens C,Weckx R,Derde S,Van Helleputte L,Schneidereit D,Haug M,et al.Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model.J Cachexia Sarcopenia Muscle.2021,12(2):443-55.
19.Klaude M,Fredriksson K,Tjader I,Hammarqvist F,Ahlman B,Rooyackers O,et al.Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis.Clin Sci.2007,112(9):499-506.
20.Morel J,Palao JC,Castells J,Desgeorges M,Busso T,Molliex S,et al.Regulation of Akt-mTOR,ubiquitin-proteasome and autophagylysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice.Sci Rep.2017,7(1):10866.
21.Kitajima Y,Yoshioka K,Suzuki N.The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy:from basic science to disorders.J Physiol Sci.2020,70(1):40.
22.Preau S,Ambler M,Sigurta A,Kleyman A,Dyson A,Hill NE,et al.Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle.Am J Physiol Regul Integr Comp Physiol.2019,316(5):R584-93.
23.Vana PG,LaPorte HM,Wong YM,Kennedy RH,Gamelli RL,Majetschak M.Proteasome inhibition after burn injury.J Burn Care Res.2016,37(4):207-15.
24.Dos Santos C,Hussain SN,Mathur S,Picard M,Herridge M,Correa J,et al.Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay.A pilot study.Am J Respir Crit Care Med.2016,194(7):821-30.
25.Crowell KT,Soybel DI,Lang CH.Restorative mechanisms regulating protein balance in skeletal muscle during recovery from sepsis.Shock.2017,47(4):463-73.
26.Gamrin-Gripenberg L,Sundstrom-Rehal M,Olsson D,Grip J,Wernerman J,Rooyackers O.An attenuated rate of leg muscle protein depletion and leg free amino acid efux over time is seen in ICU long-stayers.Crit Care.2018,22(1):13.
27.Walsh CJ,Batt J,Herridge MS,Mathur S,Bader GD,Hu P,et al.Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness.Sci Rep.2016,6:29334.
28.Crowell KT,Lang CH.Contractility and myofbrillar content in skeletal muscle are decreased during post-sepsis recovery,but not during the acute phase of sepsis.Shock.2021,55(5):649-59.
29.Vanhorebeek I,Gunst J,Derde S,Derese I,Boussemaere M,Guiza F,et al.Insufcient activation of autophagy allows cellular damage to accumulate in critically ill patients.J Clin Endocrinol Metab.2011,96(4):E633-45.
30.Masiero E,Agatea L,Mammucari C,Blaauw B,Loro E,Komatsu M,et al.Autophagy is required to maintain muscle mass.Cell Metab.2009,10(6):507-15.
31.Masiero E,Sandri M.Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles.Autophagy.2010,6(2):307-9.
32.Wagers AJ,Conboy IM.Cellular and molecular signatures of muscle regeneration:current concepts and controversies in adult myogenesis.Cell.2005,122(5):659-67.
33.Walsh CJ,Escudero King C,Gupta M,Plant PJ,Herridge MJ,Mathur S,et al.MicroRNA regulatory networks associated with abnormal muscle repair in survivors of critical illness.J Cachexia Sarcopenia Muscle.2022.https://doi.org/10.1002/jcsm.12903.
34.Rocheteau P,Chatre L,Briand D,Mebarki M,Jouvion G,Bardon J,et al.Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy.Nat Commun.2015,6:10145.
35.Jiroutkova K,Krajcova A,Ziak J,Fric M,Waldauf P,Dzupa V,et al.Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness.Crit Care.2015,19:448.
36.Preau S,Vodovar D,Jung B,Lancel S,Zafrani L,Flatres A,et al.Energetic dysfunction in sepsis:a narrative review.Ann Intensive Care.2021,11(1):104.
37.Brealey D,Brand M,Hargreaves I,Heales S,Land J,Smolenski R,et al.Association between mitochondrial dysfunction and severity and outcome of septic shock.Lancet.2002,360(9328):219-23.
38.Owen AM,Patel SP,Smith JD,Balasuriya BK,Mori SF,Hawk GS,et al.Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model.Elife.2019.https://doi.org/10.7554/eLife.49920.
39.Balboa E,Saavedra-Leiva F,Cea LA,Vargas AA,Ramirez V,Escamilla R,et al.Sepsis-induced channelopathy in skeletal muscles is associated with expression of non-selective channels.Shock.2018,49(2):221-8.
40.Segers J,Vanhorebeek I,Langer D,Charususin N,Wei W,Frickx B,et al.Early neuromuscular electrical stimulation reduces the loss of muscle mass in critically ill patients—a within subject randomized controlled trial.J Crit Care.2021,62:65-71.
41.Franceschi C,Bonafe M,Valensin S,Olivieri F,De Luca M,Ottaviani E,et al.Infamm-aging.An evolutionary perspective on immunosenescence.Ann N Y Acad Sci.2000,908:244-54.
42.Guillon A,Preau S,Aboab J,Azabou E,Jung B,Silva S,et al.Preclinical septic shock research:why we need an animal ICU.Ann Intensive Care.2019,9(1):66.
43.Shepherd SJ,Newman R,Brett SJ,Grifth DM.Enhancing rehabilitation after critical illness programme study I.Pharmacological therapy for the prevention and treatment of weakness after critical illness:a systematic review.Crit Care Med.2016,44(6):1198-205.
44.Rosenthal MD,Vanzant EL,Moore FA.Chronic critical illness and PICS nutritional strategies.J Clin Med.2021.https://doi.org/10.3390/jcm10 112294.
45.Wilkinson DJ,Piasecki M,Atherton PJ.The age-related loss of skeletal muscle mass and function:measurement and physiology of muscle fbre atrophy and muscle fbre loss in humans.Ageing Res Rev.2018,47:123-32.
46.Connolly B,Salisbury L,O’Neill B,Geneen L,Douiri A,Grocott MP,et al.Exercise rehabilitation following intensive care unit discharge for recovery from critical illness:executive summary of a Cochrane Collaboration systematic review.J Cachexia Sarcopenia Muscle.2016,7(5):520-6.
47.Iwashyna TJ,Ely EW,Smith DM,Langa KM.Long-term cognitive impairment and functional disability among survivors of severe sepsis.JAMA.2010,304(16):1787-94.
48.Chou CH,Lee JT,Lin CC,Sung YF,Lin CC,Muo CH,et al.Septicemia is associated with increased risk for dementia:a population-based longitudinal study.Oncotarget.2017,8(48):84300-8.
49.Pandharipande PP,Girard TD,Jackson JC,Morandi A,Thompson JL,Pun BT,et al.Long-term cognitive impairment after critical illness.N Engl J Med.2013,369(14):1306-16.
50.Newman MF,Kirchner JL,Phillips-Bute B,Gaver V,Grocott H,Jones RH,et al.Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery.N Engl J Med.2001,344(6):395-402.
51.Hopkins RO,Brett S.Chronic neurocognitive efects of critical illness.Curr Opin Crit Care.2005,11(4):369-75.
52.Moller JT,Cluitmans P,Rasmussen LS,Houx P,Rasmussen H,Canet J,et al.Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study.ISPOCD investigators.International study of postoperative cognitive dysfunction.Lancet.1998,351(9106):857-61.
53.Bulic D,Bennett M,Georgousopoulou EN,Shehabi Y,Pham T,Looi JCL,et al.Cognitive and psychosocial outcomes of mechanically ventilated intensive care patients with and without delirium.Ann Intensive Care.2020,10(1):104.
54.Girard TD,Jackson JC,Pandharipande PP,Pun BT,Thompson JL,Shintani AK,et al.Delirium as a predictor of long-term cognitive impairment in survivors of critical illness.Crit Care Med.2010,38(7):1513-20.
55.Calsavara AJC,Nobre V,Barichello T,Teixeira AL.Post-sepsis cognitive impairment and associated risk factors:a systematic review.Aust Crit Care.2018,31(4):242-53.
56.Calsavara AJC,Costa PA,Nobre V,Teixeira AL.Factors associated with short and long term cognitive changes in patients with sepsis.Sci Rep.2018,8(1):4509.
57.Iacobone E,Bailly-Salin J,Polito A,Friedman D,Stevens RD,Sharshar T.Sepsis-associated encephalopathy and its diferential diagnosis.Crit Care Med.2009,37(10 Suppl):S331-6.
58.Barichello T,Martins MR,Reinke A,Feier G,Ritter C,Quevedo J,et al.Cognitive impairment in sepsis survivors from cecal ligation and perforation.Crit Care Med.2005,33(1):221-3.
59.Semmler A,Frisch C,Debeir T,Ramanathan M,Okulla T,Klockgether T,et al.Long-term cognitive impairment,neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model.Exp Neurol.2007,204(2):733-40.
60.de Souza Goldim MP,Della Giustina A,Mathias K,de Oliveira Junior A,Fileti ME,De Carli R,et al.Sickness behavior score is associated with neuroinfammation and late behavioral changes in polymicrobial sepsis animal model.Infammation.2020,43(3):1019-34.
61.Skelly DT,Grifn EW,Murray CL,Harney S,O’Boyle C,Hennessy E,et al.Acute transient cognitive dysfunction and acute brain injury induced by systemic infammation occur by dissociable IL-1-dependent mechanisms.Mol Psychiatry.2019,24(10):1533-48.
62.Schaefer ST,Koenigsperger S,Olotu C,Saller T.Biomarkers and postoperative cognitive function:could it be that easy? Curr Opin Anaesthesiol.2019,32(1):92-100.
63.Franck M,Nerlich K,Neuner B,Schlattmann P,Brockhaus WR,Spies CD,et al.No convincing association between post-operative delirium and post-operative cognitive dysfunction:a secondary analysis.Acta Anaesthesiol Scand.2016,60(10):1404-14.
64.Amabili P,Wozolek A,Noirot I,Roediger L,Senard M,Donneau AF,et al.The edmonton frail scale improves the prediction of 30-day mortality in elderly patients undergoing cardiac surgery:a prospective observational study.J Cardiothorac Vasc Anesth.2019,33(4):945-52.
65.Hall RJ,Watne LO,Cunningham E,Zetterberg H,Shenkin SD,Wyller TB,et al.CSF biomarkers in delirium:a systematic review.Int J Geriatr Psychiatry.2018,33(11):1479-500.
66.Hirsch J,Vacas S,Terrando N,Yuan M,Sands LP,Kramer J,et al.Perioperative cerebrospinal fuid and plasma infammatory markers after orthopedic surgery.J Neuroinfammation.2016,13(1):211.
67.Taskforce DAS,Baron R,Binder A,Biniek R,Braune S,Buerkle H,et al.Evidence and consensus based guideline for the management of delirium,analgesia,and sedation in intensive care medicine.Revision 2015 (DASGuideline 2015)—short version.Ger Med Sci.2015,13:Doc19.
68.Mietani K,Sumitani M,Ogata T,Shimojo N,Inoue R,Abe H,et al.Dysfunction of the blood-brain barrier in postoperative delirium patients,referring to the axonal damage biomarker phosphorylated neuroflament heavy subunit.PLoS ONE.2019,14(10):e0222721.
69.Morandi A,Rogers BP,Gunther ML,Merkle K,Pandharipande P,Girard TD,et al.The relationship between delirium duration,white matter integrity,and cognitive impairment in intensive care unit survivors as determined by difusion tensor imaging:the VISIONS prospective cohort magnetic resonance imaging study*.Crit Care Med.2012,40(7):2182-9.
70.Hughes CG,Morandi A,Girard TD,Riedel B,Thompson JL,Shintani AK,et al.Association between endothelial dysfunction and acute brain dysfunction during critical illness.Anesthesiology.2013,118(3):631-9.
71.Demaret J,Venet F,Friggeri A,Cazalis MA,Plassais J,Jallades L,et al.Marked alterations of neutrophil functions during sepsis-induced immunosuppression.J Leukoc Biol.2015,98(6):1081-90.
72.Guerin E,Orabona M,Raquil MA,Giraudeau B,Bellier R,Gibot S,et al.Circulating immature granulocytes with T-cell killing functions predict sepsis deterioration*.Crit Care Med.2014,42(9):2007-18.
73.Venet F,Lukaszewicz AC,Payen D,Hotchkiss R,Monneret G.Monitoring the immune response in sepsis:a rational approach to administration of immunoadjuvant therapies.Curr Opin Immunol.2013,25(4):477-83.
74.Winkler MS,Rissiek A,Priefer M,Schwedhelm E,Robbe L,Bauer A,et al.Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response:a diagnostic tool for immunosuppression? PLoS ONE.2017,12(8):e0182427.
75.Hollen MK,Stortz JA,Darden D,Dirain ML,Nacionales DC,Hawkins RB,et al.Myeloid-derived suppressor cell function and epigenetic expression evolves over time after surgical sepsis.Crit Care.2019,23(1):355.76.Uhel F,Azzaoui I,Gregoire M,Pangault C,Dulong J,Tadie JM,et al.Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis.Am J Respir Crit Care Med.2017,196(3):315-27.
77.Loftus TJ,Mohr AM,Moldawer LL.Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult.Curr Opin Hematol.2018,25(1):37-43.
78.Drewry AM,Samra N,Skrupky LP,Fuller BM,Compton SM,Hotchkiss RS.Persistent lymphopenia after diagnosis of sepsis predicts mortality.Shock.2014,42(5):383-91.
79.Hotchkiss RS,Tinsley KW,Swanson PE,Schmieg RE Jr,Hui JJ,Chang KC,et al.Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans.J Immunol.2001,166(11):6952-63.
80.Monserrat J,de Pablo R,Diaz-Martin D,Rodriguez-Zapata M,de la Hera A,Prieto A,et al.Early alterations of B cells in patients with septic shock.Crit Care.2013,17(3):R105.
81.Shankar-Hari M,Fear D,Lavender P,Mare T,Beale R,Swanson C,et al.Activation-associated accelerated apoptosis of memory b cells in critically ill patients with sepsis.Crit Care Med.2017,45(5):875-82.
82.Dong X,Liu Q,Zheng Q,Liu X,Wang Y,Xie Z,et al.Alterations of B cells in immunosuppressive phase of septic shock patients.Crit Care Med.2020,48(6):815-21.
83.Venet F,Davin F,Guignant C,Larue A,Cazalis MA,Darbon R,et al.Early assessment of leukocyte alterations at diagnosis of septic shock.Shock.2010,34(4):358-63.
84.Martin MD,Badovinac VP,Grifth TS.CD4 T cell responses and the sepsis-induced immunoparalysis state.Front Immunol.2020,11:1364.
85.Danahy DB,Strother RK,Badovinac VP,Grifth TS.Clinical and experimental sepsis impairs CD8 T-cell-mediated immunity.Crit Rev Immunol.2016,36(1):57-74.
86.Farber DL.Tissues,not blood,are where immune cells function.Nature.2021,593(7860):506-9.
87.Coca SG,Singanamala S,Parikh CR.Chronic kidney disease after acute kidney injury:a systematic review and meta-analysis.Kidney Int.2012,81(5):442-8.
88.Horkan CM,Purtle SW,Mendu ML,Moromizato T,Gibbons FK,Christopher KB.The association of acute kidney injury in the critically ill and postdischarge outcomes:a cohort study*.Crit Care Med.2015,43(2):354-64.
89.Wu VC,Wu CH,Huang TM,Wang CY,Lai CF,Shiao CC,et al.Long-term risk of coronary events after AKI.J Am Soc Nephrol.2014,25(3):595-605.
90.Chawla LS,Amdur RL,Shaw AD,Faselis C,Palant CE,Kimmel PL.Association between AKI and long-term renal and cardiovascular outcomes in United States veterans.Clin J Am Soc Nephrol.2014,9(3):448-56.
91.Basile DP,Bonventre JV,Mehta R,Nangaku M,Unwin R,Rosner MH,et al.Progression after AKI:understanding maladaptive repair processes to predict and identify therapeutic treatments.J Am Soc Nephrol.2016,27(3):687-97.
92.Chawla LS,Eggers PW,Star RA,Kimmel PL.Acute kidney injury and chronic kidney disease as interconnected syndromes.N Engl J Med.2014,371(1):58-66.
93.Chen H,Fang Y,Wu J,Chen H,Zou Z,Zhang X,et al.RIPK3-MLKL-mediated necroinfammation contributes to AKI progression to CKD.Cell Death Dis.2018,9(9):878.
94.Szeto HH,Liu S,Soong Y,Seshan SV,Cohen-Gould L,Manichev V,et al.Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1beta and IL-18 and arrests CKD.J Am Soc Nephrol.2017,28(5):1437-49.
95.Perry HM,Huang L,Wilson RJ,Bajwa A,Sesaki H,Yan Z,et al.Dynaminrelated protein 1 defciency promotes recovery from AKI.J Am Soc Nephrol.2018,29(1):194-206.
96.Baisantry A,Bhayana S,Rong S,Ermeling E,Wrede C,Hegermann J,et al.Autophagy induces prosenescent changes in proximal tubular S3 segments.J Am Soc Nephrol.2016,27(6):1609-16.
97.Canaud G,Brooks CR,Kishi S,Taguchi K,Nishimura K,Magassa S,et al.Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fbrotic maladaptive repair.Sci Transl Med.2019.https://doi.org/10.1126/scitranslmed.aav4754.
98.Yang L,Besschetnova TY,Brooks CR,Shah JV,Bonventre JV.Epithelial cell cycle arrest in G2/M mediates kidney fbrosis after injury.Nat Med.2010,16(5):535-43.
99.Wilcox RR,Keselman HJ.Modern regression methods that can substantially increase power and provide a more accurate understanding of associations.Eur J Pers.2012,26(3):165-74.
100.Basile DP,Donohoe D,Roethe K,Osborn JL.Renal ischemic injury results in permanent damage to peritubular capillaries and infuences longterm function.Am J Physiol Renal Physiol.2001,281(5):F887-99.
101.Spurgeon KR,Donohoe DL,Basile DP.Transforming growth factor-beta in acute renal failure:receptor expression,efects on proliferation,cellularity,and vascularization after recovery from injury.Am J Physiol Renal Physiol.2005,288(3):F568-77.
102.Zager RA,Johnson AC,Andress D,Becker K.Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury.Kidney Int.2013,84(4):703-12.
103.Yang B,Lan S,Dieude M,Sabo-Vatasescu JP,Karakeussian-Rimbaud A,Turgeon J,et al.Caspase-3 is a pivotal regulator of microvascular rarefaction and renal fbrosis after ischemia-reperfusion injury.J Am Soc Nephrol.2018,29(7):1900-16.
104.Basile DP,Friedrich JL,Spahic J,Knipe N,Mang H,Leonard EC,et al.Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury.Am J Physiol Renal Physiol.2011,300(3):F721-33.
105.Maarouf OH,Uehara M,Kasinath V,Solhjou Z,Banouni N,Bahmani B,et al.Repetitive ischemic injuries to the kidneys result in lymph node fbrosis and impaired healing.JCI Insight.2018.
106.Hassoun HT,Grigoryev DN,Lie ML,Liu M,Cheadle C,Tuder RM,et al.Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy.Am J Physiol Renal Physiol.2007,293(1):F30-40.
107.Liu M,Liang Y,Chigurupati S,Lathia JD,Pletnikov M,Sun Z,et al.Acute kidney injury leads to infammation and functional changes in the brain.J Am Soc Nephrol.2008,19(7):1360-70.
108.Kelly KJ.Distant efects of experimental renal ischemia/reperfusion injury.J Am Soc Nephrol.2003,14(6):1549-58.
109.Cianciolo Cosentino C,Skrypnyk NI,Brilli LL,Chiba T,Novitskaya T,Woods C,et al.Histone deacetylase inhibitor enhances recovery after AKI.J Am Soc Nephrol.2013,24(6):943-53.
110.Kim SJ,Oh BJ,Lee JS,Lim CM,Shim TS,Lee SD,et al.Recovery from lung injury in survivors of acute respiratory distress syndrome:diference between pulmonary and extrapulmonary subtypes.Intensive Care Med.2004,30(10):1960-3.
111.Linden VB,Lidegran MK,Frisen G,Dahlgren P,Frenckner BP,Larsen F.ECMO in ARDS:a long-term follow-up study regarding pulmonary morphology and function and health-related quality of life.Acta Anaesthesiol Scand.2009,53(4):489-95.
112.Wilcox ME,Patsios D,Murphy G,Kudlow P,Paul N,Tansey CM,et al.Radiologic outcomes at 5 years after severe ARDS.Chest.2013,143(4):920-6.
113.Desai SR,Wells AU,Rubens MB,Evans TW,Hansell DM.Acute respiratory distress syndrome:CT abnormalities at long-term follow-up.Radiology.1999,210(1):29-35.
114.Orme J Jr,Romney JS,Hopkins RO,Pope D,Chan KJ,Thomsen G,et al.Pulmonary function and health-related quality of life in survivors of acute respiratory distress syndrome.Am J Respir Crit Care Med.2003,167(5):690-4.
115.Masclans JR,Roca O,Munoz X,Pallisa E,Torres F,Rello J,et al.Quality of life,pulmonary function,and tomographic scan abnormalities after ARDS.Chest.2011,139(6):1340-6.
116.Herridge MS,Cheung AM,Tansey CM,Matte-Martyn A,Diaz-Granados N,Al-Saidi F,et al.One-year outcomes in survivors of the acute respiratory distress syndrome.N Engl J Med.2003,348(8):683-93.
117.Herridge MS,Tansey CM,Matte A,Tomlinson G,Diaz-Granados N,Cooper A,et al.Functional disability 5 years after acute respiratory distress syndrome.N Engl J Med.2011,364(14):1293-304.
118.Cooper AB,Ferguson ND,Hanly PJ,Meade MO,Kachura JR,Granton JT,et al.Long-term follow-up of survivors of acute lung injury:lack of efect of a ventilation strategy to prevent barotrauma.Crit Care Med.1999,27(12):2616-21.
119.Chiumello D,Taccone P,Berto V,Marino A,Migliara G,Lazzerini M,et al.Long-term outcomes in survivors of acute respiratory distress syndrome ventilated in supine or prone position.Intensive Care Med.2012,38(2):221-9.
120.Watson RS,Choong K,Colville G,Crow S,Dervan LA,Hopkins RO,et al.Life after critical illness in children-toward an understanding of pediatric post-intensive care syndrome.J Pediatr.2018,198:16-24.
121.Woodruf AG,Choong K.Long-term outcomes and the post-intensive care syndrome in critically ill children:a North American perspective.Children.2021.https://doi.org/10.3390/children8040254.
122.Rodriguez-Rubio M,Pinto NP,Manning JC,Kudchadkar SR.Post-intensive care syndrome in paediatrics:setting our sights on survivorship.Lancet Child Adolesc Health.2020,4(7):486-8.
123.Ong C,Lee JH,Leow MK,Puthucheary ZA.Functional outcomes and physical impairments in pediatric critical care survivors:a scoping review.Pediatr Crit Care Med.2016,17(5):e247-59.
124.Pollack MM,Holubkov R,Glass P,Dean JM,Meert KL,Zimmerman J,et al.Functional Status Scale:new pediatric outcome measure.Pediatrics.2009,124(1):e18-28.
125.Farris RW,Weiss NS,Zimmerman JJ.Functional outcomes in pediatric severe sepsis:further analysis of the researching severe sepsis and organ dysfunction in children:a global perspective trial.Pediatr Crit Care Med.2013,14(9):835-42.
126.Choong K,Al-Harbi S,Siu K,Wong K,Cheng J,Baird B,et al.Functional recovery following critical illness in children:the “wee-cover” pilot study.Pediatr Crit Care Med.2015,16(4):310-8.
127.Als LC,Picouto MD,Hau SM,Nadel S,Cooper M,Pierce CM,et al.Mental and physical well-being following admission to pediatric intensive care.Pediatr Crit Care Med.2015,16(5):e141-9.
128.Kasinathan A,Sharawat IK,Singhi P,Jayashree M,Sahu JK,Sankhyan N.Intensive Care Unit-acquired weakness in children:a prospective observational study using simplifed serial electrophysiological testing (PEDCIMP Study).Neurocrit Care.2021,34(3):927-34.
129.Field-Ridley A,Dharmar M,Steinhorn D,McDonald C,Marcin JP.ICUacquired weakness is associated with diferences in clinical outcomes in critically ill children.Pediatr Crit Care Med.2016,17(1):53-7.
130.Purser MJ,Johnston DL,McMillan HJ.Chemotherapy-induced peripheral neuropathy among paediatric oncology patients.Can J Neurol Sci.2014,41(4):442-7.
131.Smith LS,Gharib SA,Frevert CW,Martin TR.Efects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice.Am J Respir Cell Mol Biol.2010,43(4):475-86.
132.Nardell EA,Brody JS.Determinants of mechanical properties of rat lung during postnatal development.J Appl Physiol Respir Environ Exerc Physiol.1982,53(1):140-8.
133.Yang G,Abate A,George AG,Weng YH,Dennery PA.Maturational diferences in lung NF-kappaB activation and their role in tolerance to hyperoxia.J Clin Invest.2004,114(5):669-78.
134.Ygberg S,Nilsson A.The developing immune system—from foetus to toddler.Acta Paediatr.2012,101(2):120-7.
135.Ghazal P,Dickinson P,Smith CL.Early life response to infection.Curr Opin Infect Dis.2013,26(3):213-8.
136.Kneyber MC,Zhang H,Slutsky AS.Ventilator-induced lung injury.Similarity and diferences between children and adults.Am J Respir Crit Care Med.2014,190(3):258-65.
137.Pollack MM,Holubkov R,Funai T,Clark A,Moler F,Shanley T,et al.Relationship between the functional status scale and the pediatric overall performance category and pediatric cerebral performance category scales.JAMA Pediatr.2014,168(7):671-6.
138.Bone MF,Feinglass JM,Goodman DM.Risk factors for acquiring functional and cognitive disabilities during admission to a PICU*.Pediatr Crit Care Med.2014,15(7):640-8.
139.Fink EL,Kochanek PM,Tasker RC,Beca J,Bell MJ,Clark RS,et al.International survey of critically ill children with acute neurologic insults:the prevalence of acute critical neurological disease in children:a global epidemiological assessment study.Pediatr Crit Care Med.2017,18(4):330-42.
140.Failla MD,Juengst SB,Arenth PM,Wagner AK.Preliminary associations between brain-derived neurotrophic factor,memory impairment,functional cognition,and depressive symptoms following severe TBI.Neurorehabil Neural Repair.2016,30(5):419-30.
141.Park SH,Hwang SK.Prognostic value of serum levels of S100 calciumbinding protein B,neuron-specifc enolase,and interleukin-6 in pediatric patients with traumatic brain injury.World Neurosurg.2018,118:e534-42.
142.Fink EL,Berger RP,Clark RS,Watson RS,Angus DC,Richichi R,et al.Serum biomarkers of brain injury to classify outcome after pediatric cardiac arrest*.Crit Care Med.2014,42(3):664-74.
143.Madurski C,Jarvis JM,Beers SR,Houtrow AJ,Wagner AK,Fabio A,et al.Serum biomarkers of regeneration and plasticity are associated with functional outcome in pediatric neurocritical illness:an exploratory study.Neurocrit Care.2021,35(2):457-67.
144.Lopes-Junior LC,Rosa M,Lima RAG.Psychological and psychiatric outcomes following PICU admission:a systematic review of cohort studies.Pediatr Crit Care Med.2018,19(1):e58-67.
145.Rees G,Gledhill J,Garralda ME,Nadel S.Psychiatric outcome following paediatric intensive care unit (PICU) admission:a cohort study.Intensive Care Med.2004,30(8):1607-14.
146.Colville G,Kerry S,Pierce C.Children’s factual and delusional memories of intensive care.Am J Respir Crit Care Med.2008,177(9):976-82.
147.Manning JC,Hemingway P,Redsell SA.Stories of survival:children’s narratives of psychosocial well-being following paediatric critical illness or injury.J Child Health Care.2017,21(3):236-52.
148.Nelson LP,Gold JI.Posttraumatic stress disorder in children and their parents following admission to the pediatric intensive care unit:a review.Pediatr Crit Care Med.2012,13(3):338-47.
本文荟萃自,只做学术交流学习使用,不做为临床指导,本文观点不代表数字日志立场。